Multiple-input Multiple-output Soft Sensors Based on Kpca and Mkls-svm for Quality Prediction in Atmospheric Distillation Column

نویسندگان

  • Qi Li
  • Qun Du
  • Wei Ba
  • Cheng Shao
چکیده

In this paper a method based on kernel principal component analysis (KPCA) and mixed kernel least square support vector machine regression (MKLS-SVM) for online quality prediction in atmospheric distillation column is presented. Firstly, the KPCA is employed to reduce the input vector’s dimensions of the multiple-input multiple-output (MIMO) soft sensor and created the data set which required training the MKLS-SVM. Then, considering that the characteristics of kernels have great impacts on learning and predictive results of LS-SVM, LS-SVM based on mixed polynomial kernel and RBF kernel is adopted to build the soft sensor model. The parameters of the MKLS-SVM are adaptively selected by the real-cord multi-population genetic algorithm (GA) with elitist strategy, migration operator, self-adaptive mutation and crossover operator. The modeling process is described with emphasis on data preprocessing and variables selection. Finally, the simulation results show that the MIMO soft sensors have good abilities of model generalization and the predicted values are in good agreement with lab measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

KPCA and ELM ensemble modeling of wastewater effluent quality indices

Reliable measurements of effluent quality are important for different operational tasks such as process monitoring, online simulation, and advanced control in the wastewater treatment process (WWTP). A kernel principal component analysis (KPCA) and extreme learning machine (ELM) based ensemble soft sensing model for effluent quality prediction was proposed. KPCA was used to extract nonlinear fe...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012